BAYESIAN MODEL SELECTION AND FORECASTING IN NONCAUSAL AUTOREGRESSIVE MODELS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Model Selection for Beta Autoregressive Processes

We deal with Bayesian inference for Beta autoregressive processes. We restrict our attention to the class of conditionally linear processes. These processes are particularly suitable for forecasting purposes, but are difficult to estimate due to the constraints on the parameter space. We provide a full Bayesian approach to the estimation and include the parameter restrictions in the inference p...

متن کامل

Noncausal Autoregressive Model in Application to Bitcoin/USD Exchange Rate

This paper introduces a noncausal autoregressive process with Cauchy errors in application to the exchange rates of the Bitcoin electronic currency against the US Dollar. The dynamics of the daily Bitcoin/USD exchange rate series displays episodes of local trends, which can be modelled and interpreted as speculative bubbles. The bubbles may result from the speculative component in the on-line t...

متن کامل

Forecasting with a noncausal VAR model

We propose simulation-based forecasting methods for the noncausal vector autoregressive model proposed by Lanne and Saikkonen (2012). Simulation or numerical methods are required because the prediction problem is generally nonlinear and, therefore, its analytical solution is not available. It turns out that different special cases of the model call for different simulation procedures. Simulatio...

متن کامل

Noncausal Autoregressive Model in Application to Bitcoin/USD Exchange Rates

This paper introduces a noncausal autoregressive process with Cauchy errors in application to the exchange rates of the Bitcoin electronic currency against the US Dollar. The dynamics of the daily Bitcoin/USD exchange rate series displays episodes of local trends, which can be modelled and interpreted as speculative bubbles. The bubbles may result from the speculative component in the on-line t...

متن کامل

Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in ‎Iran‎

‎This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Econometrics

سال: 2010

ISSN: 0883-7252

DOI: 10.1002/jae.1217